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Abstract

Problem Definition We study a product-line design problem in which customer choice among
multiple products is given by a multinomial logit (MNL) model. A firm determines product quality
and prices in an evolving product line to maximize profit. In particular, given the prices and quality
of products that already exist in a product line, the firm optimizes prices and/or quality of the new
products.

Academic/Practical Relevance We extend the literature on discrete choice models to include
the interaction between product quality and product price and consider two variations of the prob-
lem, each mirroring a relevant decision setting found in practice: Variation (i) is a price-optimization
problem in which the firm determines prices of the new products given the quality. Variation (ii)
is a joint price and quality optimization of the new products.

Methodology We apply convex optimization techniques and analyze properties of optimal solu-
tions.

ResultsWe establish concavity of the profit function under price optimization and present tractable
solution approaches for the joint quality-price optimization. For each problem variation, we charac-
terize the optimal solution and develop efficient algorithms. We show that the interaction of price
and quality is central not only to reconciling the divergence of the existing literature’s equal-markup
price prediction from differentiated markups observed in practice, but also for explaining differen-
tiated quality measures across products; this empirically observed strategy can now be quantified
and optimized with the model developed in this paper. In addition, we show that the presence of
existing products tends to drive the firm to offer new products with both higher quality and prices
due to the price-quality interaction.

Managerial Implications Findings of this paper offer not only managerial guidelines, but also
tools for decision support due to the wide empirical applicability of the MNL model. An important
managerial implication is that the lack of realism in the linear utility of the MNL model can be
addressed by including price-quality interaction, which is central to understanding the quality and
price decision in product line design. The interaction rationalizes the matching of high markup with
high quality and justifies differentiated offering of new products in the presence of existing products.

Keywords: Pricing, Revenue Management, Multinomial Logit, Product Line Design
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1 Introduction

Firms frequently introduce new products and retire old products to renew customers’ interests in

purchasing and consuming new products. For example, restaurants regularly add new items to

its menu to spur new interests. Hotels introduce new room choices (e.g., free breakfast combo,

executive package, and so on) from time to time to attract more customers. Manufacturers of

home appliances periodically launch new models with improved features and efficiency driven by

new trends in customer preference and life style. This phenomenon is even more pronounced in the

high-tech industry due to a faster industry clockspeed. At Intel, for example, new microprocessor

products are released on a quarterly basis. Such a product cadence leads to constantly evolving

product lines and, at each change epoch, a firm has to determine what products to add to an

existing product line and at what price points. That is, given the quality and prices of the existing

products, the firm optimizes the quality and/or prices of the new products to maximize the total

profit from the product line. In this paper, we interpret “quality” as a general term referring to

any dimension of product attributes that can be vertically differentiated. Such business decisions

are plagued by multiple complications. Higher quality and lower prices increase product appeal

and attract more customers, but higher quality is costly and lower prices decrease unit revenue,

both of which contribute to lower margins. In addition, the attractiveness of new products affects

the market share of existing products and may cannibalize the profit of existing products. Thus,

the firm needs to strike a balance between these competing forces.

This decision problem arises in a variety of industries but the nature of the problem is similar

across industries. Consider a resort hotel that is adding new room choices to its existing offerings.

Management would like to offer value packages that include basic room service plus resort credit to

be used for ancillary services such as restaurants, gift shop, spa and entertainment. Table 1 provides

information on existing products and a plausible set of new product offerings. The hotel’s decision

problem is to set the proper resort credit level and price for each new offer. In another example, a

Table 1: Room Offerings at a Resort Hotel.

Existing Room
Resort
Credit

Price New Room
Resort
Credit

Price

1 One King 0 259 4 One King 50 289
2 Two Queen 0 299 5 Two Queen 80 359
3 King Suite 0 359 6 King Suite 100 429

smart phone manufacturer introduces a new model (M2) of phones to its product line, which will be

sold concurrently with an existing phone model (M1). The manufacturer offers several storage-size
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variations of each model and needs to determine the storage size and price of each variation of the

new model (Table 2). In both examples, the attribute to be optimized (i.e., quality) is a dimension

Table 2: Existing and New Phone Models for a Smartphone Manufacturer
Existing Model Storage Price New Model Storage Price

1 M1 16 149 4 M2 64 299
2 M1 32 199 5 M2 128 349
3 M1 64 269 6 M2 256 499

that vertically differentiates the products and the firm optimizes the new products in the presence

of existing products.

In this paper, we explore the quality and price decisions for a product line. Specifically, we

consider two variations of the problem that are relevant in practice. In variation (i), the quality

levels of all products are given and the firm optimizes the prices of the new products. This often

arises when quality is pre-determined during the design and engineering stage and price is decided

close to product launch. In variation (ii), the firm optimizes both price and quality of the new

products. The joint decision on price and quality typically occurs during strategic planning when

a firm plans the next generation of product offerings. In practice, variations (i) and (ii) may be

adopted by the same firm for different decision scopes and contexts. For instance, a firm may solve

a joint quality-price optimization problem during strategic planning but may re-optimize prices

later by solving a variation (i) problem as a tactical adjustment.

We model demand using a widely-adopted choice model for customers facing multiple product

options – the multinomial logit (MNL) model, which can be parameterized with consumer choice

or sales data and is realistic for decision support. A new feature we include in the MNL model

is the interaction between product quality and product price, which allows the marginal utility

of quality to depend on the price level of the product, and likewise, marginal utility of price to

depend on the quality level of the product. This captures the commonly observed phenomenon

that customers are less sensitive to price changes in high-quality product than low-quality product

(Tversky and Kahneman, 1981). Historically, two schools of thought dominate the literature on

price quality relations. One proposes that consumers use price as a cue for product quality and thus

price elasticities are reduced for high quality products (e.g., Monroe and Krishnan 1985); the other

argues that customers’ marginal quality valuation changes with willingness-to-pay of customers,

hence effectively modifies price elasticity (e.g., Spence 1975). As a result, an interaction term is

often used in empirical studies to test how quality (resp. price) moderates the effect of price (resp.

quality) on customer utility or demand (e.g., Hagerty 1978, Siderelis et al. 2000). A few studies have
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included the price-quality interactions in logit choice models. Carpenter and Lehmann (1985) point

to earlier studies for the fact that price and quality may interact to affect each product’s utility

ratings and conduct empirical studies including interactions of price with product quality in the

MNL model. Crawford (2012) and Crawford et al. (2015) present logit models with a price-quality

interaction term and provide interpretations for the coefficient of the interaction. From a theoretical

perspective, Keeney (1968) extends the von Neumann and Morgenstern (1947) expected utility

theory to accommodate multiple attributes and shows that with two additional axioms governing

individual preferences among alternatives with two attributes (e.g., quality x and price p), an

individual’s utility has the following quasi-separable form: u(x, p) = u1(x) + u2(p) + ku1(x)u2(p)

where k is a real number. Our utility model of a product with attribute x and price p is consistent

with this bivariate utility function form.

The ease of use and interpretation makes the interaction term a simple but powerful tool for

incorporating the moderating effect of price and quality on how they each affect customer utility

or demand. We build on this addition and adopt the interaction term in the MNL model in a

normative decision setting. To our knowledge, we are the first to apply this modification to a

firm’s product line decision under MNL demand. We show that this interaction rationalizes the

matching of high markup with high quality which supplements the equal-markup pricing result

in the literature. The equal-markup result derives from the orthogonality of price and quality in

their effect on customer utility and is not always consistent with observations in practice (Berry

et al., 1995). For example, Morris and Bronson (1969) study quality-price rank correlation for 48

commodity data sets and find that 38 out of the 48 studies exhibit positive correlations. Gerstner

(1985) considers a data set of 145 products and finds that price and quality are positively correlated

for most durable items. Berry et al. (1995) and Feenstra and Levinsohn (1995) empirically estimate

markups in the automobile industry and find evidence that markup is generally increasing in price.

The practice of charging higher markups for high quality is ubiquitous in today’s market as well.

For example, Apple currently sells two models of iPhone 7 at $549 and $649 for 32GB and 128GB

capacity respectively, while the two models of iPhone 8 with 64GB and 256GB capacity are selling

for $699 and $849 respectively (Apple Corporation Website,, 2018b). Intel has a long history of

selling its top-bin products (those with higher speed performance) at a much higher margin than

the lower-bin products (Intel Corporation Website,, 2018). Therefore, our result presents a more

realistic characterization of the pricing decision. More significantly, it has important implications

for decisions involving product quality. We show that the sequence of optimal quality values among

the newly offered products matches the sequence of prices, controlling for other parameters. Our
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analysis indicates that the interaction term plays a central role in justifying differentiated offering

of new products. With the interaction effect of price and quality, the optimal quality and markup

vary across products even under identical price sensitivity and cost function, which is a commonly-

adopted strategy that can now be quantified and optimized with the model developed in this paper.

Our theoretical contributions are threefold: First, ours is the first in the literature to solve joint

pricing and quality decisions under the MNL model allowing continuous quality values. Existing

literature that addresses joint pricing and quality decisions examines a given assortment of products,

i.e., the quality values are a finite set of pre-selected discrete values and thus the insights are

limited to assortment selection. Our paper, in contrast, yields strategic insights on how firm should

design its product line and optimally set product quality on a continuum in conjunction with

prices, providing decision support with a new dimension. We establish concavity of the profit

functions under price optimization and with considerations of existing products in the product

line and we identify a sufficient condition for unique optimal solution for the joint price-quality

optimization as well as providing a tractable solution method when the condition does not hold.

Second, we characterize the optimal price and quality and develop efficient algorithms for each

problem variation. Third, we are the first to include price-quality interaction in the optimization

which helps reconcile the divergence of existing literature’s equal-markup price prediction from

empirical practices and uncovers new insights on product quality decisions as the product line

evolves.

The remainder of the paper is organized as follows. In Section 2, we review relevant literature

and further elaborate on our contributions. In Section 3, we present the model formulations,

the solution methods, structural properties as well as numerical examples. We conclude with a

discussion in Section 4.

2 Literature Review

Understanding customers’ behavior when they make choices has been an interesting topic of study

and has captured attention from scholars in economics and marketing. Thurstone (1927) develops

a utility model to estimate the choice probability which is later refined by Marschak et al. (1959)

and Luce (1959) to a Random Utility Maximization (RUM) model. A commonly adopted RUM

model is the multinomial logit (MNL) model which describes customer choices among multiple

alternatives (e.g., McFadden et al. 1973; McFadden 1980, 1986; Anderson et al. 1992; Berry 1994).

The MNL model has been applied to predict and understand behavior in different markets, including
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transportation (McFadden, 1974), housing (McFadden, 1978), grocery (Guadagni and Little, 1983),

and telephone services (Train et al., 1987). A key advantage of the MNL model is attributed to its

flexibility in incorporating customer preference and sensitivity toward various product attributes

and price. This allows a firm to take advantage of both past sales data and customer preference

information to make informed decisions.

One of the widely studied applications of customer choice is pricing, in which companies set

prices of multiple substitutable products considering customers’ choice preferences. There exists

a large body of pricing literature based on the MNL model. One early study by Greene (1991)

introduces an automobile pricing problem considering the fuel efficiency of each product. Further

studies of product line pricing include Chen and Hausman (2000), Aydin and Ryan (2000), and

Luo et al. (2007) among others. For theoretical developments, Hanson and Martin (1996) show

that profit is not concave in price. They introduce a heuristic method based on a path-following

approach to set prices. Many researchers have studied joint pricing and inventory decisions under

the MNL demand (e.g., Aydin and Porteus 2008; Hopp and Xu 2005; Maddah and Bish 2007;

Akçay et al. 2010). Song and Xue (2007) and Dong et al. (2009) show that the problem is not

concave in price, but is concave in the choice probability. Dong et al. (2009) identify an interesting

“equal-markup” property, i.e., the optimal markups of all products are the same. Such a property

diverges from differentiated markups commonly observed in practice, which drives researchers to

search for more complex models that do not need to conform to this property (Alptekinoğlu and

Semple, 2016). Li and Huh (2011) and Gallego and Wang (2014) consider pricing under the nested

logit model in which the choice alternatives are grouped into “nests”. Li and Huh (2011) generalize

the concavity property to the nested model and Gallego and Wang (2014) identify an “adjusted

equal-markup” property. In this paper, we show that, due to the interaction of price and quality in

customer utility, not only does the optimal markup vary with product quality in price optimization,

but both the optimal markup and optimal quality vary across products in the joint optimization of

price and quality. While the mixed MNL (MMNL) may also result in non-equal markups in optimal

pricing decision, both the underlying driving mechanism and insights differ from that accomplished

with the interaction. The MMNL model addresses heterogeneity in customer price sensitivity that

is independent of quality. For example, Li et al. (2018) model a discrete MMNL model in which

the customer population consists of multiple segments each with segment-specific price sensitivity.

The optimal prices, therefore, have to balance the marginal utilities of different customer segments

in addition to the standard tradeoffs captured in a MNL model to maximize the total profit. This

often leads to markups that do not follow the sequence of product quality such as the steak versus
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tofu scenario illustrated in Li et al. (2018). Although many other generalizations of the MNL model

address certain limitations of the MNL model, they do not capture the price-quality interactions.

For example, the nested Logit (NL) model overcomes the Independence of Irrelevant Alternatives

(IIA) limitation by grouping the choice alternatives into nests, which in effect allows correlated

choice alternatives (e.g., McFadden 1978, 1980). The cross nested logit (CNL) further extends it

by allowing fractional group membership (i.e., each choice alternative can be included in multiple

nests) thus enabling more complex correlation structures (e.g., Small 1987, Vovsha 1997). Like the

MNL, when price sensitivities are symmetric across products, both NL and CNL maintain the equal

markup property (see a detailed discussion in Li and Webster (2017)). In other words, correlation

among choice alternatives itself does not drive differentiated markups. Naturally, the analysis and

solution approaches developed in this paper for including the price-quality interaction in the MNL

model will also pave a foundation for extending these more complex logit models with price-quality

interaction.

Assortment decisions under the MNL model is also well studied (e.g., Cachon and Kök 2007;

Maddah and Bish 2007; Kök and Fisher 2007; Cachon et al. 2008). In these problems, there is a finite

set of pre-determined product alternatives and the firm decides which alternatives to include in its

assortment. Such an assortment optimization is a combinatorial problem and a well-known result

of the optimal assortment is the “revenue-ordered” structure which includes a subset of products

with higher revenues than the rest (Talluri and van Ryzin, 2004). Some consider joint assortment

and pricing problems under MNL (e.g., Cachon et al. 2008; Wang 2012; Wang and Sahin 2017)

and related models (e.g., Kök and Xu 2011; Li et al. 2015). With joint pricing and assortment

optimization, the optimal decision is to include all available products in the assortment (Wang,

2012). In contrast to this literature, we examine a problem in which the number of products

is given and we search for optimal quality values that are continuously adjustable. Further, we

analytically characterize the relationships between the optimal quality or price and the model

primitives to shed light on the optimal product line design.

Our work also relates broadly to the literature on product line design. There are two lines

of research in this literature – those that seek analytical properties of the optimal solution on a

continuum and those that seek practical solutions for optimal product selections among discrete

options (see Dobson and Kalish 1993).

The former often focuses on product quality and/or price decisions under diversity of customer

preferences (e.g., Mussa and Rosen 1978; Moorthy 1984; Oren et al. 1984; Villas-Boas 1998; Kim and
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Chhajed 2002; Netessine and Taylor 2007; Pan and Honhon 2012). A key tradeoff identified in these

papers is that, when facing a heterogenous customer population, selling to low-valuation customers

may create negative externality on high-value customers and thus it is important that firms set

quality and/or prices such that customers self select. Common in this stream of work is that the

price schedule is dictated by a pre-assumed willingness-to-pay schedule, and thus price increases

with quality when differentiation is possible. This is consistent with our result of higher markup for

higher quality. However, these stylized models are difficult to parameterize with real data and do

not accommodate practical complexities of a large product line, i.e., a multitude of product offerings

that differentiate across multiple dimensions including product features and prices. They are useful

for conceptual illustration but not designed to identify optimal price/quality decisions for a discrete

product line in a practical business setting. In comparison, rigorous econometric methods have long

been established for the multinomial logit (MNL) model to parameterize customer choices, to fit and

predict demand of multiple differentiated products (Greene, 2003), providing the pertinent input

to subsequent price/quality optimizations. Lancaster (1990) summarizes the structural properties

identified for the Chamberlinian and Hoteling models and their analogs or extensions in this context;

specifically, the optimal level of product variety is affected by (i) scale economy (ii) customer

sensitivity to product differentiation and (iii) market competitiveness. Papers in this line of research

adopt highly stylized demand models that yield strategic guidance but are not ideal for decision

support. Compared to this line of work, we consider the product quality and price decisions in

the MNL model, which has empirical support (McFadden, 1974, 1978; Guadagni and Little, 1983;

Train et al., 1987) and is efficient to parameterize (Greene, 2003; Train, 2003). In addition, we

explicitly model the quality and price interaction. We provide not only structural properties, but

also efficient solution methods to joint price and quality optimizations on a continuum.

The latter line of work focuses on discrete decision of product selection and the focus is on

heuristic algorithms that achieve efficiency. This line of work further diverges into two branches:

(1) one that selects products from a predefined set (i.e., optimizing over the product scope, e.g.,

McBride and Zufryden 1988; Green and Krieger 1985, 1993; Bertsimas and Mǐsić 2016) which is

essentially the assortment optimization problem, and (2) one that selects discrete attribute levels

of the products (i.e, optimizing over the attribute space, see, e.g., Kohli and Sukumar 1990; Wang

et al. 2009). In addition, some papers consider assortment in conjunction with price and typically

optimize over the product scope but allow price to be continuous (e.g., Dobson and Kalish 1988,

1993; Kraus and Yano 2003; Schön 2010b) or discrete (e.g., Schön 2010a; Chen and Hausman 2000).

Belloni et al. (2008) identify a method to find a guaranteed optimal solution and use it to evaluate
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heuristic but speedier methods. Several of the above papers, Chen and Hausman (2000) and Schön

(2010a,b) use the MNL demand model. The primary goal of these papers is to seek efficient solution

methods for the discrete optimization, but they do not offer insights on structural properties of the

solution due to the combinatorial nature of the problem formulation.

In contrast with existing work, our research contributes to the literature by addressing three

novel issues. First, we consider the situation when a company is given an existing product line and

determines the prices of the new products, which is a realistic setting, yet has not been addressed.

Secondly, we develop a continuous quality optimization model with joint pricing decisions under

the MNL model which is new to the product line design literature, as well as to the pricing and

revenue management literature. We present both efficient solution methods and structural property

characterizations for two realistic problem variations. Thirdly, we allow for a nonlinear interaction

among price and quality in consumer utility, which enables us to more accurately model how

consumer utility changes over multiple dimensions (e.g., price and quality) and derive useful insights

for the quality and pricing decisions.

3 Model

A customer makes a selection of one of n product choices and a no-purchase alternative. The

product purchase probabilities are given by the MNL model. Let the utility of product i, i =

1, 2, . . . , n be

ui = xi − bipi + βixipi + ai + ǫi

where xi is the quality, pi is the price of product i, ai represents an observable utility term that is

independent of xi and pi, and ǫi is a noise term which is a Gumbel random variable that represents

unobserved utility. We remark that ai refers to utility from attributes that are exogenously deter-

mined and orthogonal to xi. For example, for hotel rooms, ai may capture utility associated with

the type of room such as King, Queen and Suite, whereas xi reflects utility of ancillary services such

as packages that include resort credit, event activities and meals. For smart phone products, ai may

be associated with the model type (e.g., iPhone 7, iPhone 7plus), and xi may be associated with the

storage size (e.g., 64GB, 256GB), similar to the example in Table 2. That is, the quality measure x

is a linear utility scale transformed from the nominal scale of a certain attribute such as storage size

or resort credit. Without loss of generality, we assume xi ∈ [0, x+i ] where xi = 0 and xi = x+i align

with the lowest and highest possible quality level respectively. For example, the quality scale for
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smart phones could be the logarithm transformation of the nominal storage size. Then, adjusting

for a minimum required size of 16GB (i.e., align xi = 0 with 16GB), nominal values of 64GB,

128GB and 256GB correspond to x values of 0.6, 0.9, and 1.2 respectively, while the maximum x+i

may correspond to the scaled value of some practical upper limit of storage size. Parameters bi > 0

and βi ≥ 0 are the coefficients for price sensitivity where bi is quality-independent sensitivity and

βi is the coefficient for the interaction term and captures the heterogeneity in customer sensitivity

towards the product price at different quality levels. We assume that bi − βixi is always positive

for all xi ∈ [0, x+i ], i.e., customers always experience a disutility toward higher prices.

Interaction terms in regression models are used to capture how the marginal effect of one

explanatory variable on the dependent variable is modified by another explanatory variable and

are prevalent in statistics and econometric applications (Allison, 1977; Rajan and Zingales, 1998;

Greene, 2003). An interaction term is typically modeled as the product of two variables in the

regression equation

Y = β0 + β1X1 + β2X2 + β12X1X2 + ǫ .

The same form of interaction terms is also commonly adopted in logit and probit models (Nagler,

1994; Ai and Norton, 2003). The interaction term in the utility function of the logit model allows

the marginal utility of quality x to depend on price p and equivalently, the marginal disutility of

price p to depend on x. Specifically, rewrite the utility function in two alternative forms

ui = xi − (bi − βixi)pi + ai + ǫi and (1)

ui = (1 + βipi)xi − bipi + ai + ǫi . (2)

The marginal disutility of pi is given by (bi − βixi) which decreases with attribute; the marginal

utility of xi is (1 + βipi) which increases with price. As discussed in the introduction, this in effect

models the empirical observation that customers are less sensitive to price change at high quality,

or equivalently, customers are more sensitive to quality change at high price (i.e., − ∂
∂xi

(

∂(−ui)
∂pi

)

=

∂
∂p

(

∂ui

∂xi

)

≥ 0 where ∂(−ui)
∂pi

is the marginal disutility of price).

Let J be the set of existing products and I be the set of new products. Assume the no-purchase

option has a utility of zero. For product j ∈ J , its price, quality, and cost values are fixed at p̄j ,

x̄j, and c̄j respectively. Let x = (xi)i∈I be the vector of quality of the new products. For the ease

of notation, we also define ūj = x̄j − bj p̄j + βj x̄j p̄j + aj , m̄j = p̄j − c̄j and π̄J =
∑

j∈J m̄je
ūj

1+
∑

j∈J eūj
. Note

that π̄J is the firm’s expected profit prior to the addition of the new products.
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The purchase probability of a new product i ∈ I is

qi =
exi−bipi+βixipi+ai

1 +
∑

j∈J e
ūj +

∑

i′∈I e
xi′−bi′pi′+βi′xi′pi′+ai′

, (3)

the purchase probability of an existing product j ∈ J is

qj =
eūj

1 +
∑

j′∈J e
ūj′ +

∑

i∈I e
xi−bipi+βixipi+ai

and (4)

q0 =
1

1 +
∑

j∈J e
ūj +

∑

i∈I e
xi−bipi+βixipi+ai

is the no-purchase probability. Therefore,

qi = q0e
xi−bipi+βixipi+ai and (5)

qj = q0e
ūj . (6)

3.1 Price Optimization

Price optimization arises when the firm sets prices of the new products to maximize the total profit

from the product line. For instance, in Table 1, the resort hotel decides the prices of the new

room offers based on the information of existing room offers and the planned service packages for

each room type in the new offers; similarly in Table 2, the smartphone manufacturer decides the

prices of the new phones given all other information. Price optimization under the MNL model

is well-established and we provide incremental contributions to this problem through two features:

(1) consideration of existing products in the product line, and (2) consideration of quality-price

interaction. In the presence of existing products, the pricing decision of the new products affects

not only the relative market share of the new products, but also those of the existing products.

Hence, it does not merely imply an enlarged no-purchase utility with the additional constant term
∑

j∈J e
ūj as equation (3) might have suggested. Incorporating the interaction of quality and price

enables us to characterize how quality differences translate to price differences across products,

thereby reconciling the counterintuitive equal-markup solution in the literature.

Let p = (pi)i∈I be the vector of prices of the new products. The firm’s price optimization

problem is

max
p

π(p) =
∑

i∈I

(pi − ci)qi(p) +
∑

j∈J

m̄jqj(p) ,

which is not a concave or a quasiconcave maximization even for the special case of J = ∅ (Dong

et al., 2009). We rewrite profit as a function of choice probabilities of the new products, q = (qi)i∈I ,
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and show that this function is concave. From (5) and (6),

pi = (x̄i + ai + log q0 − log qi)/(bi − βix̄i) and (7)

q0 = 1−
∑

i∈I

qi −
∑

j∈J

qj = 1−
∑

i∈I

qi −





∑

j∈J

eūj



 q0 ,

the latter of which is equivalent to

q0 =
1−

∑

i∈I qi

1 +
∑

j∈J e
ūj

. (8)

Therefore, the price optimization problem can be restated as

max
q

π̂(q) =
∑

i∈I

(pi(q) − ci)qi +
∑

j∈J

m̄jqj(q), (9)

where

pi(q) =

[

x̄i + ai + log

(

1−
∑

i∈I qi

1 +
∑

j∈J e
ūj

)

− log qi

]

/(bi − βix̄i) and

qj(q) =
1−

∑

i∈I qi

1 +
∑

j∈J e
ūj
eūj .

Theorem 1. π̂(q) is concave in q.

Dong et al. (2009) and Song and Xue (2007) have shown that the profit is concave in the choice

probability vector for a clean-slate problem in which J = ∅. Theorem 1 extends the state-of-art

literature and establishes a unique optimal solution in the presence of existing products.

Theorem 2. The optimal prices of the new products and the firm’s optimal total profit are

p∗i = ci +
1

bi − βix̄i
+ θ (10)

π∗ = θ

where θ solves the single-variable equation

θ = π̄J +

∑

i∈I e
x̄i+ai−1−(bi−βix̄i)(ci+θ)/(bi − βix̄i)

1 +
∑

j∈J e
ūj

. (11)

From Theorem 2, all else equal, the optimal markup is higher for higher-quality product, and

for product with lower bi and higher βi values, as stated in the following corollary.

Corollary 1. At optimality, the following holds for i, i′ ∈ I, i 6= i′: (i) Let bi = bi′ and βi = βi′ .

Then p∗i − ci > p∗i′ − ci′ if and only if x̄i > x̄i′ . (ii) Let βi = βi′ and x̄i = x̄i′ . Then p∗i − ci > p∗i′ − ci′

if and only if bi < bi′ . (iii) Let bi = bi′ and x̄i = x̄i′ . Then p∗i − ci > p∗i′ − ci′ if and only if βi > βi′ .

12



Hence, controlling other parameters, a hotel room with a higher resort credit package or a

smartphone with larger storage size should command a higher markup than its peer products. The

next corollary implies that the well-known equal mark-up property holds if βi = 0 and bi = b for

all i ∈ I.

Corollary 2. If bi = b and βi = 0 for all i ∈ I, then the optimal prices become

p∗i = ci + π̄J +
1

b

[

1 +W

(

∑

i∈I e
x̄i+ai−bci−1−bπ̄J

1 +
∑

j∈J e
ūj

)]

where W (·) is the Lambert W function.

We remark that, treating bi − βix̄i as the effective price sensitivity, the relationship in (10)

reproduces the more general equal “adjusted mark-up” property identified in Gallego and Topaloglu

(2014) but specializes it in terms of quality-price interaction.

Theorem 2 also leads to the following bounds for π∗.

Corollary 3. π̄J ≤ π∗ ≤ π̄J +
∑

i∈I e
x̄i+ai−1−(bi−βix̄i)(ci+π̄J )/(bi−βix̄i)

1+
∑

j∈J eūj
.

These bounds, along with equation (11), lead to an efficient bisection search algorithm for

solving the optimal profit and prices.

Algorithm 1. (Price Optimization)

1. Let θ− = π̄J and θ+ = π̄J +
∑

i∈I
ex̄i+ai−1−(bi−βix̄i)(ci+π̄J )/(bi−βix̄i)

1+
∑

j∈J
eūj

2. Let θ = (θ− + θ+)/2.

3. Compute f = π̄J +
∑

i∈I
ex̄i+ai−1−(bi−βix̄i)(ci+θ)/(bi−βix̄i)

1+
∑

j∈J eūj
.

4. If f > θ, let θ− = θ; if f < θ, let θ+ = θ.

5. Repeat Steps 2-4 until f = θ.

6. Compute optimal prices according to equation (10).

Examples

Consider a manufacturer with a product cost function c(a, x) = 0.5a+x2. Suppose the manufacturer

currently offers three products with aj, x̄j and p̄j values shown in Table 3. The manufacturer plans

to add three new products, products 4-6, with quality given in Table 3, while still keeping products

1-3 in its portfolio and maintaining their current prices. The price coefficients are bi = bj = 1 and

βi = βj = 0.2 for all i ∈ I and j ∈ J . Algorithm 1 is applied to obtain the optimal prices for the

new products. We observe that the optimal markups vary across products despite that all products

13



Table 3: Price Optimization.
Initial Products (j ∈ J) aj x̄j p̄j m̄j New Products (i ∈ I) ai x̄i p∗i m∗

i

1 0.0 0.5 2 1.75 4 0.0 0.8 3.39 2.75
2 1.0 0.8 3 1.86 5 1.0 1.0 4.31 2.81
3 2.0 1.0 4 2.00 6 2.0 1.2 5.32 2.86

have the same b and β values. This is more inline with practice than the equal-markup solution.

Table 4 presents a comparison of problem instances and sheds light on how optimal prices are

affected by the magnitude of b, β and the quality of the new products. In these examples, the

quality and prices for three existing products are {a}j∈J = [0, 1, 2], {x̄}j∈J = [0.5, 0.8, 1.0] and

{p̄}j∈J = [2, 3, 4]. The cost function is the same as in the example of Table 3. The comparison

Table 4: Optimal Quality Vary with Prices.
New Quality Optimal Prices

Instance b β x̄4 x̄5 x̄6 p∗4 p∗5 p∗6 profit

1 2.00 0.05 0.8 1.0 1.2 1.39 2.25 3.19 0.24
2 1.00 0.05 0.8 1.0 1.2 2.95 3.83 4.78 1.27
3 0.50 0.05 0.8 1.0 1.2 5.09 6.00 6.99 2.27
4 1.00 0.10 0.8 1.0 1.2 3.09 3.98 4.94 1.36
5 1.00 0.20 0.8 1.0 1.2 3.39 4.31 5.32 1.56
6 1.00 0.05 0.3 0.5 0.7 2.42 3.09 3.85 1.32
7 1.00 0.05 0.2 0.4 0.6 2.36 3.00 3.71 1.31
8 1.00 0.05 0.2 0.5 0.8 2.36 3.09 3.99 1.31
9 1.00 0.05 0.5 1.0 1.5 2.51 3.79 5.57 1.24

of instances 1-3 demonstrates the effect of the parameter b while the comparison of instances 2, 4

and 5 demonstrates the effect of the parameter β – the optimal prices decrease in b and increase

in β. Instances 2, 6, and 7 suggest that higher quality levels lead to higher prices while instances

7-9 show that a larger quality gap between products (i.e., larger x̄i − x̄i′ value) results in a larger

price gap (i.e., larger p∗i − p∗i′ value).

3.2 Quality and Price Optimization

In this section, we study the joint optimization of product quality and price. For example, the

resort hotel considers optimizing both the service package value and the price of each new room

offer to maximize the total profit. Let x = (xi)i∈I denote the vector of quality levels for the new

products and define Ω = {x|0 ≤ xi ≤ x+i , i ∈ I}.

max
x∈Ω,p

π(x,p) =
∑

i∈I

(pi − ci(xi))qi(x,p) +
∑

j∈J

m̄jqj(x,p).

Recall that in the hotel example, ai represents customers’ utility for a particular room type

(i.e., King, Queen or Suite) and xi represents customers’ utility for a particular service package
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(e.g., $50, $80, or $100 resort credit). In general, the value of ai reflects the composite utility of all

attributes of product i that are not part of the design decision (i.e., features of the product that

are not to be changed), whereas quality xi is the utility from the attribute to be optimized. For

example, ai may reflect a certain product type, for example, room type in a hotel, type of seats

in an airplane (main cabin, business class, first class), or size of a rental car (compact, mid-size,

full-size) and xi may represent add-on services. The joint quality-price optimization model helps

us optimally set both the level of add-on services and the price for the product to be offered in

each type.

The choice of quality affects product cost. Let ci(xi) be the unit cost of product i ∈ I at quality

xi, which is assumed to be nonnegative. The product cost function may differ across products,

reflecting differences in fixed and variable attributes, i.e., ci(xi) = c(ai, xi). For brevity, we denote

the cost function with ci(xi) but we emphasize that it is also a function of ai. To ensure that the

cost function ci(xi) is well-behaved, we make the following assumption.

Assumption 1. The cost function ci(xi), i ∈ I is twice differentiable, increasing and convex in xi

for all xi ∈ [0, x+i ].

We remark that convexity of ci(xi) does not necessitate convexity of the nominal cost curve of

a product attribute. Note that xi is a linear utility measure of quality that can be different from

its natural or nominal measure. In the smart phone example, suppose that the cost of memory

increases linearly with size. Since the x values are generated by taking logarithm, the cost function

in terms of x becomes exponential which is convexly increasing. A similar argument holds for the

hotel example. Suppose customer utility does not grow linearly with the resort credit amount, but

at a lower order of growth (e.g., the rate of a square root function) while the cost of the resort

credit grows linearly with the amount. Then the cost function in terms of x becomes convex (e.g.,

quadratic). In other words, Assumption 1 is satisfied if the cost of the focal attribute is convexly

increasing in its linear utility contribution x, or equivalently, the utility of the focal attribute

exhibits diminishing return on cost. For the remainder of the paper we assume that Assumption 1

holds.

Letm = (mi)i∈I wheremi = pi−ci(xi). From (5), qi = q0e
xi+ai−bipi+βixipi = q0e

xi+ai−(bi−βixi)pi

= q0e
xi+ai−(bi−βixi)ci−(bi−βixi)mi and thus solve mi as a function of x and q:

mi = [xi + ai − (bi − βixi)ci(xi)− log qi + log q0] /(bi − βixi) .
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We can express the total profit as

π̂(x, q) =
∑

i∈I

qi
bi − βixi

[xi + ai − (bi − βixi)ci(xi)− log qi + log q0(q)] +





∑

j∈J

m̄je
ūj



 q0(q) .

Theorem 3. Given x, π̂(x, q) is concave in the choice probability vector q. The optimal markup

is given by

m∗
i (x) =

1

bi − βixi
+ θ(x)

where θ(x) solves

θ =

∑

i∈I e
xi+ai−(bi−βixi)ci(xi)−1−(bi−βixi)θ/(bi − βixi)

1 +
∑

j∈J e
ūj

+

∑

j∈J m̄je
ūj

1 +
∑

j∈J e
ūj

. (12)

Let π̃(x) = maxq π̂(x, q). We can establish the following relationship.

Lemma 1. π̃(x) = θ(x).

Therefore, to maximize π̃(x), we only need to maximize θ(x).

In the special case when βi = 0, the optimal solution is unique and given in the following

theorem.

Theorem 4. Let x∗ = (x∗i )i∈I and p
∗ = (p∗i )i∈I be the optimal solution to the joint quality and

price optimization problem. Suppose βi = 0. Then the optimal solution is given by

x∗i =

{ c′−1
i

(

1
bi

)

, if c′−1
i

(

1
bi

)

∈ [0, x+i ]

0, if c′−1
i

(

1
bi

)

< 0

x+i , if c′−1
i

(

1
bi

)

> x+i ,

i ∈ I. (13)

p∗i = ci(x
∗
i ) +

1

bi
+ θ∗ (14)

where θ∗ solves

θ =

∑

i∈I e
x∗

i+ai−bici(x
∗

i )−1−biθ/bi

1 +
∑

j∈J e
ūj

+ π̄J .

Theorem 4 describes the optimal solution of the joint quality and price optimization in the

absence of interaction. Consider a cost function ci(·) that is additively separable in ai and xi. Also,

consider a case with symmetric bi, i.e., bi = b for all i ∈ I. From equations (13) and (14), it must

be that x∗i = x∗i′ and p∗i − ci(x
∗
i ) = p∗i′ − ci(x

∗
i′) for all i, i′ ∈ I. That is, the optimal prices and

quality are such that all new products have equal markup and equal quality, as summarized in the

following corollary.
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Corollary 4. Suppose that the cost function is additively separable in ai and xi, i.e., ci(xi) =

ca(ai) + cx(xi) and that bi = b and βi = 0 for all i ∈ I. Then at optimality, x∗i = x∗i′ and m∗
i = m∗

i′

for any i, i′ ∈ I.

The result in Corollary 4 lacks realism and is an oversimplification of the effect of quality and

price on customers’ utility. However, it serves as a benchmark case for understanding the impact

of interaction. Next, we illustrate how the inclusion of a simple quality and price interaction

term leads to a different conclusion by capturing a more realistic relationship between customer

preference and product quality/price.

In general, βi > 0 and θ(x) is defined by the implicit function (12). Taking derivatives with

respect to xi, and with algebraic transformation, we obtain

∂θ(x)

∂xi
=

qi
bi − βixi

[

1− (bi − βixi)c
′
i(xi) + βici(xi) + βiθ +

βi
bi − βixi

]

. (15)

From (15), a necessary condition for an internal optimal solution is

hi(x) := −1− βi (θ(x) + ci(xi)) + (bi − βixi)c
′
i(xi)−

βi
bi − βixi

= 0 for all i ∈ I , (16)

which can be rewritten as

(bi − βixi)c
′
i(xi)− βi

(

ci(xi) +
1

bi − βixi

)

= 1 + βiθ for all i ∈ I (17)

If for any given θ, there exists a unique xi such that the above is satisfied, then the joint quality and

price optimization is reduced to a single-variable fixed point solution. If, in addition, the Jacobian

of h(x) = (h1(x), h2(x), . . . , hn(x)) evaluated at x∗

J(x∗) =









∂h1(x∗)
∂x1

· · · ∂h1(x∗)
∂xn

...
. . .

...
∂hn(x∗)

∂x1
· · · ∂hn(x∗)

∂xn









is positive semidefinite for any x
∗ satisfying (16), then x

∗ is a global maximum.

In the following theorem, we identify a sufficient condition for positive semidefinite J(x∗) that

uses a lower bound on the value
c′′i (x)
c′i(x)

which is a measure of the normalized convexity of the cost

function ci(·). The value of
c′′i (x)
c′i(x)

is generally not difficult to evaluate. For example, for polynomial

cost functions of the form ci(x) = a+ bxn where n > 1,
c′′i (x)
c′i(x)

= n−1
x ; for exponential cost functions

of the form ci(x) = a+ beαx where α > 0,
c′′i (x)
c′i(x)

= α.

Assumption 2. For any xi ∈
[

0, x+i

]

, the cost function ci(·) satisfies

c′′i (xi)

c′i(xi)
>

3βi
bi − βixi

. (18)
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Assumption 2 ensures that for a given θ, the left side of (17) can only cross 1 + βiθ from

below. Therefore, if a solution to (17) exists, it must be unique. Under Assumption 2, the Jacobian

matrix J(x∗) is a diagonal matrix with nonnegative diagonal elements (note that ∂hi(x)
∂xi

= (bi −

βix
∗
i )c

′′
i (x

∗
i ) − 2βic

′
i(x

∗
i ) −

(

βi

bi−βix∗

i

)2
> 0 according to Lemma 2 in the appendix and ∂hi(x)

∂xj
=

0), which is positive semi-definite. This implies global optimality. Later in the paper we also

consider the setting where Assumption 2 does not hold and identify an optimization procedure

that accommodates multiple stationary points.

Assumption 2 requires that the cost function be “sufficiently” convex. In most realistic scenarios,

the interaction effect is small relative to the main effect of price and we expect the fraction βi

bi−βixi

to be small. Thus the condition is not as restrictive as it might appear. For polynomial cost

functions of the form ci(x) = a+ bxn, it can be shown that the condition reduces to n−1
3 >

βix
+
i

bi−βix
+
i

;

for exponential cost functions of the form ci(x) = a+ beαx, condition (18) reduces to α
3 > βi

bi−βix
+
i

.

Theorem 5. If Assumption 2 holds, then the optimal profit θ∗ to the joint quality and price

optimization problem is the fixed-point solution to

θ =

∑

i∈I e
xi(θ)+ai−(bi−βixi(θ))ci(xi(θ))−1−(bi−βixi(θ))θ/(bi − βixi(θ))

1 +
∑

j∈J e
ūj

+ π̄J . (19)

where xi(θ) is the unique solution of (17) for any given θ if a solution to (17) exists and xi(θ) =

0 or x+i otherwise (specifically, if 1− bic
′
i(0) + βici(0) + βiθ +

βi

bi
< 0, then xi(θ) = 0; if 1− (bi −

βix
+
i )c

′
i(x

+
i ) + βici(x

+
i ) + βiθ+

βi

bi−βix
+
i

> 0, then xi(θ) = x+i ). In addition, the optimal quality and

price values are given by

x∗i = xi(θ
∗) (20)

p∗i = ci(x
∗
i ) +

1

bi − βix∗i
+ θ∗ . (21)

We remark that, given additively separable cost functions and symmetric b and β, the optimal

quality is not identical across products but varies based on ai values, which can be derived from

equation (17). As a result, the optimal markup must also differ across products with different ai

values due to equation (21). The following corollary provides a key insight into the implication of

the interaction term.

Corollary 5. Suppose Assumption 2 holds. In addition, assume that the cost function is additively

separable in ai and xi, i.e., ci(xi) = ca(ai) + cx(xi) where ca(·) is a non-decreasing function, and

that bi = b and βi = β for all i ∈ I. Then x∗i ≥ x∗i′ and m∗
i ≥ m∗

i′ if and only if ai ≥ ai′ for any

i, i′ ∈ I.
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Contrasting this with Corollary 4, the optimal quality levels and markups now differ by ai values

and products with a larger ai value is matched with a higher quality as well as a higher markup.

In a practical setting, this implies, for example, that the smart phone manufacturer shall design its

product line such that a premium model (which corresponds to a high ai value) is matched with a

premium storage size as well as a premium price – a commonly-adopted strategy which can now

be quantified and optimized with the model developed in this paper.

From (21), we also observe that the properties of the optimal prices identified in Corollary 1

for the price optimization problem continue to hold for the joint optimization problem. When

price and quality can be determined jointly, lower price sensitivity of a product allows the firm to

charge a higher price for the product, and subsequently to also set a higher quality value. Thus the

relative magnitude of xi versus other products depends on both βi and bi, as shown in the following

corollary.

Corollary 6. Suppose Assumption 2 holds. For any i, i′ ∈ I and i 6= i′,

(i) let bi = bi′ , βi = βi′ and ci(·) = ci′(·), then x∗i > x∗i′ if and only if p∗i > p∗i′.

(ii) if βi = βi′ and ci(·) = ci′(·), then x∗i > x∗i′ if and only if bi < bi′ .

In addition, we derive the following bounds for θ∗.

Corollary 7. Under Assumption 2, π̄J ≤ θ∗ ≤ π̄J +
∑

i∈I e
max

{

ai+
bi
βi

−
b2i
βi

c′i(0), ai−1−bi(ci(0)+π̄J )

}

/bi

1+
∑

j∈J eūj
.

Theorem 5 identifies the fixed-point equation for the optimal solution but does not establish

uniqueness of the solution or identify an efficient solution algorithm. Next, we show that the

fixed-point solution to (19) is unique and can be obtained with a bisection search. Define

g(θ) :=

∑

i∈I e
xi(θ)+ai−(bi−βixi(θ))ci(xi(θ))−1−(bi−βixi(θ))θ/(bi − βixi(θ))

1 +
∑

j∈J e
ūj

.

Theorem 6. g(θ) monotonically decreases in θ and equation (19) has a unique fixed-point solution.

As a result of Theorem 6, the solution of equation (19) can be obtained through an efficient

bisection search algorithm.

Algorithm 2. (Quality and Price Optimization)

1. Let θ− = π̄J and θ+ = π̄J +
∑

i∈I e
max

{

ai+
bi
βi

−
b2
i

βi
c′
i
(0), ai−1−bi(ci(0)+π̄J )

}

/bi

1+
∑

j∈J
eūj

.

2. Let θ = (θ− + θ+)/2 and solve (17) for xi(θ), i ∈ I following Steps (a)-(e):
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(a) Let y− = 0 and y+ = x+
i .

(b) Let y = (y− + y+)/2.

(c) Compute z = (bi − βixi)c
′
i(xi)− βi

(

ci(xi) +
1

bi−βixi

)

.

(d) If z > 1 + βiθ, let y
− = y; if z < 1 + βiθ, let y

+ = y.

(e) Repeat Steps (a)-(e) until z = θ or y+ = y−. Then xi(θ) = y.

3. If, for the given θ value, Steps (a)-(e) do not converge, then let θ+ = θ and repeat Step 2. If no
solution is found for θ at its lowest value, then set x∗

i = x+
i .

4. Let ci(xi) = ci(xi(θ)), i ∈ I and compute f =
∑

i∈I exi+ai−(bi−βixi)ci(xi)−1−(bi−βixi)θ/(bi−βixi)

1+
∑

j∈J
eūj

+ π̄J .

5. If f > θ, let θ− = θ; if f < θ, let θ+ = θ.

6. Repeat Steps 2-4 until f = θ.

If, for a given cost function, Assumption 2 is not satisfied, then we cannot apply Algorithm

2. Instead, we note a special characteristic of the optimality condition in (17). That is, given the

value of θ, the left side of the equation does not depend on xj , j 6= i. This implies that, given θ,

we can use a single-dimension search to find all stationary xi values for all i ∈ I. For any given θ,

let xki (θ), k = 1, . . . ,K where K > 1 be the multiple paths of solutions to equation (17). For any

given path (defined by some selection rule when picking a solution to (17) from potentially multiple

possibilities), we can show that g(θ) is decreasing in θ by applying Theorem 6 for this generalization.

In other words, we have multiple g functions, i.e., g1(θ), . . . , gK(θ) which are decreasing in θ. The

function that yields the largest fixed-point solution to (19) yields the global maximum. Denote this

function with g∗(θ) and the global maximum with θ∗.

Since each gk(θ) function decreases monotonically in θ, it is easy to see that the global maximum

must satisfy g∗(θ∗) ≥ gk(θ∗) for all k = 1, . . . ,K. Consequently, to locate the global maximum, it

suffices to locate the fixed-point solution of θ = gmax(θ) + π̄J where gmax(θ) := maxk g
k(θ). Since

gmax(θ) must also be decreasing in θ, we can apply bisection search to obtain the optimal value of θ.

Therefore, we propose the following algorithm for obtaining the optimal solution when Assumption

2 does not hold or cannot be verified.

Algorithm 3. (Quality and Price Optimization without Assumption 2)

1. Let θ− = π̄J and θ+ = π̄J +
∑

i∈I
ex

+
i

+ai−(bi−βix
+
i

)ci(0)−1−(bi−βix
+
i

)θ−/(bi−βix
+
i
)

1+
∑

j∈J
eūj

.

2. Let θ = (θ− + θ+)/2.

(a) Search in the range of [0, x+
i ] for all values of xi that satisfy (17) and place them in set Xi. In

addition, place 0 and x+
i in set Xi if they are not already included.

(b) For each x = (xi)i∈I where xi ∈ Xi, compute

f(x) =

∑

i∈I e
xi+ai−(bi−βixi)ci(xi)−1−(bi−βixi)θ/(bi − βixi)

1 +
∑

j∈J eūj
+ π̄J .
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(c) Let fmax = maxxi∈Xi,i∈I f(x).

3. If fmax > θ, then let θ− = θ; if fmax < θ, let θ+ = θ.

4. Repeat Steps 2-3 until fmax = θ.

We remark that the upper bound from Corollary 7 holds true only under Assumption 2. There-

fore in Algorithm 3 we construct an upper bound based solely on xi ∈ [0, x+i ].

Examples

Consider a manufacturer with the product cost function ci(ai, xi) = 0.1ai+0.1e1.5xi where xi ∈ [0, 4].

The manufacturer has an existing set of products with {aj}j∈J = [0, 5, 10], {x̄j}j∈J = [0.5, 0.8, 1],

{p̄j}j∈J = [2, 3, 4]. It introduces three new products with {ai}i∈I = [0, 5, 10] and jointly optimizes

prices and quality of the new products in the expanded product line. The values of b and β are

the same across products and are given in Table 5. It can be verified that Assumptions 2 holds for

all parameter combinations presented in the table. We apply Algorithm 2 to optimize both prices

and quality (i.e., pi, xi, i ∈ I) of the new products and the results are recorded in Table 5.

Table 5: Jointly Optimization of Quality and Prices.
Optimal Quality Optimal Prices

Instance b β x∗

4 x∗

5 x∗

6 p∗4 p∗5 p∗6 profit

1 3.0 0.35 1.08 1.15 1.22 2.85 3.41 3.97 1.96
2 3.0 0.40 1.17 1.25 1.32 3.03 3.60 4.17 2.05
3 3.0 0.45 1.27 1.35 1.42 3.22 3.81 4.40 2.14
4 3.5 0.35 0.84 0.92 0.99 2.01 2.56 3.11 1.35
5 3.5 0.40 0.91 0.99 1.07 2.11 2.66 3.22 1.40
6 3.5 0.45 0.98 1.07 1.15 2.22 2.78 3.35 1.45
7 4.0 0.35 0.66 0.75 0.82 1.52 2.05 2.59 0.98
8 4.0 0.40 0.71 0.80 0.89 1.57 2.11 2.66 1.01
9 4.0 0.45 0.77 0.86 0.95 1.62 2.18 2.73 1.03

Note that products 4-6 are differentiated only by their ai value prior to the optimization. The

optimized prices and quality follow a sequence matching that of ai’s, as Corollary 5 implies.

Table 5 and Figure 1 illustrate that the optimal quality decreases with price sensitivity b: as

customers become more price sensitive (equivalently, less willing to pay), the manufacturer lowers

prices, which, due to the interaction of quality and price, leads to lower marginal utility of quality

(equation (2)); this, consequently, drives the manufacturer to reduce quality. Managerially, with

more price-sensitive customers, it is optimal for the firm to play the low-end strategy (i.e., setting

lower quality and lower price).

Now consider the effect of β. Larger β implies higher marginal utility of x, creating incentive to

increase quality; the increased quality in turn, reduces customers’ marginal disutility of price and
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Figure 1: Optimal Quality Values vs. b and β

thus drives up optimal prices, which in turn further increases the marginal utility of x. Due to such

a reinforcement effect on the marginal utility, increasing β leads to both higher optimal quality and

higher optimal prices. This discussion reveals a central role that the interaction effect plays in the

joint optimization of quality and prices, i.e., it causes the optimal prices and quality to move in

tandem, and as the interaction intensifies, both move upward. Recall that the interaction effect has

been adopted to model the phenomenon that customers often use price as a cue for quality. Thus

according to our findings, strong price-cue effect drives a firm more toward the high-end strategy

(i.e., offering products with premium quality and high prices).

Joint optimization dominates price optimization alone and leads to higher profit. We illustrate

such improvement with numerical experiments that consider multiple b and β parameter combina-

tions. For each parameter combination, we generate 100 random problem instances by drawing the

quality values of the new products from a uniform distribution on [0, 2] and perform price optimiza-

tion for each instance. We then compute the percentage profit improvement of joint optimization

over price optimization for each instance and average over these 100 instances; we also present the

average profit under price optimization and that under joint optimization. See results in Table 6.

As is shown, profit improvement with joint optimization can be substantial.

3.3 Effect of Existing Products on Optimal Decision

In this section, we explore the impact of existing products on the optimal quality and price decisions

of new products, as well as how the impact is modified by the price-quality interaction.

Recall that I is the set of new products and J is the set of existing products. Let π∗
I∪J denote

the total profit of the product line given the set of existing product J and that the price and quality

of the new products in I are optimally determined via methods in Section 3.2. Let π∗
I denote the
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Table 6: Profit Improvement (Joint vs. Price Optimization).
Average Profit for Profit for Average

Combination b β Price Optimization Joint Optimization Improvement

1 3.5 0.35 1.23 1.35 11.1%
2 3.5 0.40 1.28 1.40 9.8%
3 3.5 0.45 1.34 1.45 8.9%
4 4.5 0.35 0.60 0.74 35.8%
5 4.5 0.40 0.62 0.76 31.8%
6 4.5 0.45 0.65 0.77 28.2%
7 5.5 0.35 0.31 0.43 91.0%
8 5.5 0.40 0.32 0.44 81.6%
9 5.5 0.45 0.33 0.45 73.2%

optimal profit with no existing product. Similarly, let
(

p∗i|I∪J , x∗i|I∪J

)

i∈I
and

(

p∗i|I , x∗i|I

)

i∈I
denote

the optimal decisions with and without the existing products.

The following corollaries show the effect of existing products on quality/price decisions with

and without price-quality interaction. Corollary 8 follows directly from Theorem 4. Corollary 9

follows directly from Theorem 5 and the fact that the left-hand side of equation (17) is increasing

in xi under Assumption 2.

Corollary 8. Suppose βi = 0 for all i ∈ I. (i) The optimal quality of the new product x∗i , i ∈ I

is independent of price and quality of any existing product. (ii) If π∗
I∪J > π∗

I , then the presence of

existing products J causes the prices of new products to increase, i.e., p∗i|I∪J > p∗i|I for all i ∈ I;

otherwise, the opposite holds true.

Corollary 9. Suppose βi > 0 for all i ∈ I and Assumption 2 holds. If π∗
I∪J > π∗

I , then the

presence of existing products J causes both the quality and prices of new products to increase, i.e.,

x∗i|I∪J > x∗i|I and p∗i|I∪J > p∗i|I for all i ∈ I; otherwise, the opposite holds true.

The effect of existing products on the optimal price/quality decisions for new products is deter-

mined by the relationship between π∗
I∪J and π∗

I . From a practical perspective, the existing products

J that remain in the offer set at the time new products are introduced are such that π∗
I∪J > π∗

I ,

i.e., if π∗
I∪J < π∗

I , then one or more of the existing products should be dropped from the product

line.

Without interaction, assuming that the firm has made the right decision for including products

j ∈ J , the presence of existing products drives up the optimal prices of the new products, but

does not affect the optimal quality of the new products. The independence of optimal quality

from existing products is a consequence of zero price-quality interaction and is arguably unrealistic

in most industry contexts. With interaction, the presence of existing products (assuming that
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inclusion is a good decision) ought to drive the firm to offer new products positioned higher in

both quality and price. This resonates with practical observations. For example, the latest iPhone

model X has been introduced in the presence of existing iPhone7 and iPhone8 products, priced at

hefty $999, $1149, and $1349 for 64GB, 256GB, and 512GB storage size respectively and a slew of

other fancy high-end features (Apple Corporation Website,, 2018a). Had iPhone7 and iPhone8 not

been included, Apple would probably not have aimed its new products at such extreme high-end

target position.

4 Conclusion and Discussion

Constantly evolving product lines create challenges for product design. In this paper, we ad-

dress this complex problem by formulating the pricing and quality decision problem using a MNL

model with quality-price interaction. We consider two practical variations of the problem: (i)

optimize prices of the new products in the presence of existing products in the product line and

pre-determined product quality of the new products, and (ii) optimize both prices and quality of

the new products in the presence of existing products. We characterize the profit function and the

optimal solution, in particular, how the optimal prices and/or optimal quality vary across prod-

ucts and with the parameters. Our analysis yields efficient solution algorithms for each problem

variation.

An important message that this paper brings forth is that the lack of realism in the linear utility

of the MNL model and the resulting equal markup and equal quality properties can be addressed

with an interaction term. This interaction term is a simple but powerful extension that is central

to understanding the quality and price decision in product line design. With the interaction effect,

the optimal quality and markup vary across products even under identical price sensitivity and

cost function. Illustrative examples add further insights on how the optimal solution is affected by

coefficients of the utility model and how the joint optimization improves the firm’s profit beyond

what is accomplished by price optimization alone.

This paper considers price and quality decisions when a firm adds to an existing product line but

we note that the “clean-slate” version of the problem, i.e., when the firm can decide prices and/or

quality of all products to be offered, is a special case of the model in this paper. This includes the

case where the firm is starting a new product line (i.e., without any existing product), as well as the

case in which the firm decides to re-optimize the price and quality of both existing and new products.

In practice, a mixed optimization in which price and/or quality optimization may be performed on
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different sets of products is also likely. For example, in some industries, the older version products

are discounted when the new versions are introduced. In this case, the firm may decide to optimize

prices of both new and old products but only optimize quality of the new products. This scenario

is not modeled in the current two variations. However, it is straightforward to extend our model to

accommodate such a scenario. Furthermore, in practice, new product introduction often involves

the decision on the number of new products to introduce as well as product features. Cost as a

function of the number of new products is generally complex and nonlinear (e.g., incorporating

costs related to production setup and product roll-out, and diseconomy of scope). Our methods

allow management to compare profits with the associated costs, thereby supporting a decision on

the number of new products to introduce. In sum, the model and methods presented in this paper

apply broadly to practical decision scenarios.
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A Appendix

A.1 Proof of Theorem 1

Proof. Substitute (6) and (7) into (9) to obtain

π(q) =
∑

i∈I

(

x̄i + ai + log q0(q)− log qi
bi − βix̄i

− ci

)

qi +





∑

j∈J

m̄je
ūj



 q0(q)

=
∑

i∈I

(

x̄i + ai − log(1 +
∑

j∈J e
ūj )

bi − βix̄i
− ci

)

qi +





∑

j∈J

m̄je
ūj



 q0(q)

−
∑

i∈I

qi
[

log qi − log(1−
∑

i∈I qi)
]

bi − βix̄i

where the second equation follows from equation (8). The first and third terms are both linear in

q (see equation (8)), thus if the term qi
[

log qi − log(1−
∑

i∈I qi)
]

is convex in q, then the total

profit is concave in q. From Lemma 2 in Li and Huh (2011), qi
[

log qi − log(1−
∑

i∈I qi)
]

is jointly

convex in qi and
∑

i∈I qi. Since
∑

i∈I qi is an affine transformation of q, convexity is preserved.

Thus the term qi
[

log qi − log(1−
∑

i∈I qi)
]

is convex in q, which implies π(q) is concave in q.

A.2 Proof of Theorem 2

Proof. Take the first order derivative of π̂(q) in (9) with respect to qi to obtain

∂π̂(q)

∂qi
= pi − ci +

∑

i′∈I

∂pi′(q)

∂qi
qi′ +

∑

j∈J

m̄j
∂qj(q)

∂qi

= pi − ci +
1

bi − βixi
−

∑

i′∈I
qi′/q0

bi′−βi′xi′
+
∑

j∈J m̄je
ūj

1 +
∑

j∈J e
ūj

where the second equality follows from (7) and (8). Thus the first order condition becomes

pi − ci −
1

bi − βixi
=

∑

i′∈I
qi′/q0

bi′−βi′xi′
+
∑

j∈J m̄je
ūj

1 +
∑

j∈J e
ūj

.

Since the right side of the above is independent of the subscript i, rewrite the above as

pi − ci −
1

bi − βixi
= θ ∀i ∈ I (22)

where

θ =

∑

i′∈I
qi′/q0

bi′−βi′xi′
+
∑

j∈J m̄je
ūj

1 +
∑

j∈J e
ūj

. (23)
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From equations (5) and (22),

qi′/q0 = exi′+ai′−(bi′−βi′xi′ )pi′ = exi′+ai′−1−(bi′−βi′xi′ )(ci+θ) .

Substitute this expression into (23) to obtain

θ =

∑

i′∈I
exi′+a

i′
−1−(b

i′
−β

i′
x
i′
)(ci+θ)

bi′−βi′xi′
+
∑

j∈J m̄je
ūj

1 +
∑

j∈J e
ūj

.

In addition, from (9),

π∗ =
∑

i∈I

(θ +
1

bi − βixi
)qi +

∑

j∈J

m̄jqj =
∑

i∈I

(θ +
1

bi − βixi
)qi +

∑

j∈J

m̄jq0e
ūj

= θ −

(

1−
∑

i∈I

qi

)

θ + q0





∑

i∈I

1

bi − βixi
qi/q0 +

∑

j∈J

m̄je
ūj





= θ −

(

1−
∑

i∈I

qi

)

θ + q0



1 +
∑

j∈J

eūj



 θ

= θ −

(

1−
∑

i∈I

qi

)

θ +
1−

∑

i∈I qi

1 +
∑

j∈J e
ūj



1 +
∑

j∈J

eūj



 θ = θ

where the second equality follows from (6), the fourth equality follows from (23), and the second-

to-last equality follows from (8).

A.3 Proof of Corollary 2

Proof. Since bi = b and βi = 0, equation (11) reduces to θ = π̄J +
(
∑

i∈I e
x̄i+ai−1−bci/b)e−bθ

1+
∑

j∈J eūj
, which is

equivalent to b(θ−π̄J)e
b(θ−π̄J ) =

∑

i∈I e
x̄i+ai−1−b(ci+π̄J )

1+
∑

j∈J eūj
. By the definition of the Lambert W function,

we have b(θ − π̄J) = W

(

∑

i∈I e
x̄i+ai−1−b(ci+π̄J )

1+
∑

j∈J eūj

)

, hence θ∗ = π̄J + 1
bW

(

∑

i∈I e
x̄i+ai−1−b(ci+π̄J )

1+
∑

j∈J eūj

)

.

From equation (10), p∗i = ci + π̄J + 1
b

(

1 +W

(

∑

i∈I e
x̄i+ai−1−b(ci+π̄J )

1+
∑

j∈J eūj

))

.

A.4 Proof of Theorem 3

Proof. The proof of concavity follows the same approach as in Theorem 1 and we omit the details

here. We can derive the first order condition

mi −
1

bi − βixi
=

(

∑

i′∈I

qi′

bi′ − βi′xi′

)

1

1−
∑

i′∈I qi′
+





∑

j∈J

m̄je
ūj





1

1 +
∑

j∈J e
ūj
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with the right side independent of i. Let mi −
1

bi−βixi
= θ. Then at optimality,

(

1−
∑

i∈I

qi

)

θ =

(

∑

i∈I

qi
bi − βixi

)

+

∑

j∈J m̄je
ūj

1 +
∑

j∈J e
ūj

(

1−
∑

i∈I

qi

)

. (24)

Since

1−
∑

i∈I

qi =
1 +

∑

j∈J e
ūj

1 +
∑

j∈J e
ūj +

∑

i∈I e
xi+ai−(bi−βixi)ci−(bi−βixi)mi

and mi = 1/(bi − βixi) + θ, the following holds:

θ =

(

∑

i∈I
exi+ai−(bi−βixi)ci−(bi−βixi)mi/(bi−βixi)

1+
∑

j∈J eūj+
∑

i∈I e
xi+ai−(bi−βixi)ci−(bi−βixi)mi

)

(

1+
∑

j∈J eūj

1+
∑

j∈J eūj+
∑

i∈I e
xi+ai−(bi−βixi)ci−(bi−βixi)mi

) +

∑

j∈J m̄je
ūj

1 +
∑

j∈J e
ūj

=

∑

i∈I e
xi+ai−(bi−βixi)ci−(bi−βixi)mi/(bi − βixi)

1 +
∑

j∈J e
ūj

+

∑

j∈J m̄je
ūj

1 +
∑

j∈J e
ūj

=

∑

i∈I e
xi+ai−(bi−βixi)ci−1−(bi−βixi)θ/(bi − βixi)

1 +
∑

j∈J e
ūj

+

∑

j∈J m̄je
ūj

1 +
∑

j∈J e
ūj

,

which is an easy-to-solve single-variable equation (i.e., the left side increases in θ and, for all feasible

xi∈ [0, x+i ], the right side decreases in θ).

A.5 Proof of Lemma 1

Proof. For brevity, we omit the argument x in the following derivation.

π̃ =
∑

i∈I

miqi +
∑

j∈J

m̄jqj =
∑

i∈I

(

1

bi − βixi
+ θ

)

qi +
∑

j∈J

m̄je
ūjq0

=
∑

i∈I

qi
bi − βixi

+ θ
∑

i∈I

qi +
∑

j∈J

m̄je
ūjq0

=

(

1−
∑

i∈I

qi

)

θ −

∑

j∈J m̄je
ūj

1 +
∑

j∈J e
ūj

(

1−
∑

i∈I

qi

)

+ θ
∑

i∈I

qi +
∑

j∈J

m̄je
ūjq0

= θ −

∑

j∈J m̄je
ūj

1 +
∑

j∈J e
ūj

(

1−
∑

i∈I

qi

)

+
∑

j∈J

m̄je
ūjq0

= θ −
∑

j∈J

m̄je
ūj

(

1−
∑

i∈I qi

1 +
∑

j∈J e
ūj

− q0

)

= θ

where the second equality follows from (24) and the last equality is due to (8).
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A.6 Proof of Theorem 4

Proof. Recall that θ solves (12). Let y = (yi)i∈I and yi = x∗i − bici(x
∗
i ). Then (12) becomes:

θ =

∑

i∈I e
yi+ai−1−biθ/bi

1 +
∑

j∈J e
ūj

+

∑

j∈J m̄je
ūj

1 +
∑

j∈J e
ūj

. (25)

We implicitly differentiate (12) with respect to yi to obtain

∂θ(y)

∂yi
=

1

1 +
∑

j∈J e
ūj

[

∑

i′∈I

eyi′+ai′−1−bi′θ

bi′
(−bi′)

∂θ(y)

∂yi

]

+
eyi+ai−1−biθ/bi
1 +

∑

j∈J e
ūj

,

which yields

∂θ(y)

∂yi
=

eyi+ai−1−biθ/bi
1 +

∑

j∈J e
ūj +

∑

i′∈I e
yi′+ai′−1−bi′θ

> 0 .

Thus θ(y) strictly increases in yi for all i ∈ I. Therefore, it suffices to maximizes yi for all i ∈ I.

Recall that yi = xi − bici(xi). Since ci(xi) is convex, the optimal quality satisfies

c′i(xi) =
1

bi
(26)

if c′−1
i

(

1
bi

)

∈ [0, x+i ], xi = 0 if c′−1
i

(

1
bi

)

< 0, and xi = x+i if c′−1
i

(

1
bi

)

> x+i for all i ∈ I. Thus optimal

x∗i satisfies (13) and the optimal price p∗i satisfies (14).

Lemma 2. Suppose Assumption 2 holds. Then, for any x∗i ∈
[

0, x+i

]

, that satisfies (17), the cost

function ci(·) satisfies

(bi − βix
∗
i )c

′′
i (x

∗
i ) > 2βic

′
i(x

∗
i ) +

(

βi
bi − βix∗i

)2

.

Proof. For any xi ∈
[

0, x+i

]

, that satisfies (17),

(bi − βix
∗
i )c

′
i(x

∗
i ) = 1 +

βi
bi − βix

∗
i

+ βi(θ + ci(x
∗
i )) >

βi
bi − βix

∗
i

Thus

2βi
bi − βix∗i

+

(

βi
bi − βix∗i

)2 1

(bi − βix∗i )c
′
i(x

∗
i )

<
2βi

bi − βix∗i
+

(

βi
bi − βix∗i

)2(bi − βix
∗
i

βi

)

=
2βi

bi − βix∗i
+

(

βi
bi − βix∗i

)

=
3βi

bi − βix∗i
.

From Assumption 2,

c′′i (x
∗
i )

c′i(x
∗
i )

>
2βi

bi − βix∗i
+

(

βi
bi − βix∗i

)2 1

(bi − βix∗i )c
′
i(x

∗
i )

Since ci(xi) is increasing, the above is equivalent to

(bi − βix
∗
i )c

′′
i (x

∗
i ) > 2βic

′
i(x

∗
i ) +

(

βi
bi − βix

∗
i

)2

.
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A.7 Proof of Theorem 5

Proof. Define fi(xi) = (bi−βixi)c
′
i(xi)−βi

(

ci(xi) +
1

bi−βixi

)

. Take derivative of fi(xi) with respect

to xi,

f ′
i(xi) = (bi − βixi)c

′′
i (xi)− 2βic

′
i(xi)−

(

βi
bi − βixi

)2

.

From Lemma 2, f ′
i(xi) > 0 for any xi ∈

[

0, x+i

]

that satisfies (17). Thus fi(xi) is monotonic in xi.

For any given θ, the solution to (17) is unique, denoted with x(θ). It is possible that for certain

θ values, equation (17) does not have a solution. Since θ(x) is unimodal in xi (note that under

Assumption 2, for all xi that satisfies (17),
∂2θ
∂x2

i

< 0.), this could occur in one of the following two

cases: (i) If 1−(bi)c
′
i(0)+βici(0)+βiθ+

βi

bi
< 0, then it is easy to see from (15) that ∂θ(x)

∂xi
< 0, hence

we set xi as small as possible, i.e., let xi = 0. (ii) If 1−(bi−βix
+
i )c

′
i(x

+
i )+βici(x

+
i )+βiθ+

βi

bi−βix
+
i

> 0,

then ∂θ(x)
∂xi

> 0, in which case the optimal solution is to set xi as large as possible, i.e., at x
+
i . From

(12), the optimal profit is given by the following fixed-point condition

θ =

∑

i∈I e
xi(θ)+ai−(bi−βixi(θ))ci(xi(θ))−1−(bi−βixi(θ))θ/(bi − βixi(θ))

1 +
∑

j∈J e
ūj

+

∑

j∈J m̄je
ūj

1 +
∑

j∈J e
ūj

.

From Theorem 4, we obtain the corresponding optimal quality and price values in (20) and (21).

A.8 Proof of Corollary 5

Proof. Since bi = b, βi = β, equation (21) becomes m∗
i =

1
b−βx∗

i
+ θ∗. Hence, m∗

i ≥ m∗
i′ if and only

if x∗i ≥ x∗i′ . Therefore, it suffices to show that x∗i ≥ x∗i′ if and only if ai ≥ ai′ for any i, i′ ∈ I. Since

ci(xi) = ca(ai) + cx(xi), equation (17) becomes

(b− βxi)c
′
x(xi)− β

(

ca(ai) + cx(xi) +
1

b− βxi

)

= 1 + βθ for all i ∈ I,

which is equivalent to

(b− βxi)c
′
x(xi)− β

(

cx(xi) +
1

b− βxi

)

= 1 + βθ + βca(ai) for all i ∈ I .

From Assumption 2, the left side of the above is monotonically increasing in xi, thus the solution to

this equation is non-decreasing in ai. Therefore, x
∗
i ≥ x∗i′ if and only if ai ≥ ai′ for any i, i′ ∈ I .

A.9 Proof of Corollary 6

Proof. (i) We note from equation (21) that, if bi = bi′ , βi = βi′ and ci(·) = ci′(·), then x∗i > x∗i′ if

and only if p∗i > p∗i′ . (ii) From equation (17),

(bi − βix
∗
i )c

′
i(x

∗
i )− βi

(

ci(x
∗
i ) +

1

bi − βix
∗
i

)

= 1 + βiθ
∗ for all i ∈ I .
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The left side is increasing in x∗i (by Assumption 2) and in bi. Therefore, if βi = βi′ and ci(·) = ci′(·),

then x∗i > x∗i′ if and only if bi < bi′ .

A.10 Proof of Corollary 7

Proof. From Theorem 5, θ∗ ≥ π̄J and that the optimal solution satisfies

θ∗ + ci(x
∗
i ) =

bi − βix
∗
i

βi
c′i(x

∗
i )−

(

1

βi
+

1

bi − βix
∗
i

)

(27)

or x∗i = 0 if θ∗+ci(0) <
bi
βi
c′i(0)−

(

1
βi

+ 1
bi

)

, x∗i = x+i if θ∗+ci(x
+
i ) >

bi−βix
+
i

βi
c′i(x

+
i )−

(

1
βi

+ 1
bi−βix

+
i

)

.

Let I0 ∈ I be the subset of products for which x∗i = 0 and Ī0 ∈ I be the subset for which x∗i > 0.

Substitute the above into (19),


1 +
∑

j∈J

eūj





(

θ∗ −

∑

j∈J m̄je
ūj

1 +
∑

j∈J e
ūj

)

≤
∑

i∈Ī0

e
x∗

i+ai−1−(bi−βix
∗

i )

[

bi−βix
∗

i
βi

c′i(x
∗

i )−

(

1
βi

+ 1
bi−βix

∗
i

)]

/(bi − βix
∗
i ) +

∑

i∈I0

eai−1−bi(ci(0)+π̄J )/bi

=
∑

i∈Ī0

e
ai+

bi
βi

−
(bi−βix

∗

i )
2

βi
c′i(x

∗

i )/(bi − βix
∗
i ) +

∑

i∈I0

eai−1−bi(ci(0)+π̄J )/bi

=
∑

i∈Ī0

exp

(

ai +
bi
βi

)

exp

(

− log(bi − βix
∗
i )−

(bi − βix
∗
i )

2

βi
c′i(x

∗
i )

)

+
∑

i∈I0

eai−1−bi(ci(0)+π̄J )/bi .

It can be shown that under Assumption 2, the term − log(bi − βix
∗
i ) −

(bi−βix∗

i )
2

βi
c′i(x

∗
i ) is strictly

decreasing in x∗i (due to Lemma 2). Therefore,


1 +
∑

j∈J

eūj





(

θ∗ −

∑

j∈J m̄je
ūj

1 +
∑

j∈J e
ūj

)

≤
∑

i∈Ī0

exp

(

ai +
bi
βi

)

exp

(

− log(bi)−
b2i
βi
c′i(0)

)

+
∑

i∈I0

eai−1−bi(ci(0)+π̄J /bi

=
∑

i∈Ī0

1

bi
exp

(

ai +
bi
βi

−
b2i
βi
c′i(0)

)

+
∑

i∈I0

eai−1−bi(ci(0)+π̄J )/bi

≤
∑

i∈I

1

bi
exp

(

max
{

ai +
bi
βi

−
b2i
βi
c′i(0), ai − 1− bi(ci(0) + π̄J)

}

)

.

Equivalently,

θ∗ ≤

∑

i∈I
1
bi
exp

(

max
{

ai +
bi
βi

−
b2i
βi
c′i(0), ai − 1− bi(ci(0) + π̄J)

})

1 +
∑

j∈J e
ūj

+ π̄J
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A.11 Proof of Theorem 6

Proof.



1 +
∑

j∈J

eūj



 g′(θ)

=
∑

i

exi(θ)+ai−(bi−βixi(θ))ci(xi(θ))−1−(bi−βixi(θ))θ

bi − βixi(θ)

·

[

x′i(θ)− (bi − βixi(θ))(1 + c′i(xi(θ))x
′
i(θ) + βix

′
i(θ)

(

ci(xi(θ)) + θ +
1

bi − βixi(θ)

)]

= −
∑

i

exi(θ)+ai−(bi−βixi(θ))ci(xi(θ))−1−(bi−βixi(θ))θ +
∑

i

exi(θ)+ai−(bi−βixi(θ))ci(xi(θ))−1−(bi−βixi(θ))θ

bi − βixi(θ)

·x′i(θ)

[

1− (bi − βixi(θ))c
′
i(xi(θ) + βi

(

ci(xi(θ)) + θ +
1

bi − βixi(θ)

)]

.

From (17), we have either

(bi − βixi(θ))c
′
i(xi(θ))− βi

(

ci(xi(θ)) + θ +
1

bi − βixi(θ)

)

= 1 .

or x′i(θ)=0 (in the case xi(θ) = 0 or x+i ). Thus



1 +
∑

j∈J

eūj



 g′(θ) = −
∑

i

exi(θ)+ai−(bi−βixi(θ))ci(xi(θ))−1−(bi−βixi(θ))θ < 0 .

Therefore, g(θ) strictly decreases in θ. Thus, the solution to (19) is unique.
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